Earthquakes today

Current and latest world earthquakes breaking news, activity and articles today

Geological news

Elevated Nitrogen and Phosphorus Still Widespread in Much of the Nation’s Streams and Groundwater


Elevated Nitrogen and Phosphorus Still Widespread in Much of the Nation’s Streams and Groundwater

Complete findings, as well as a USGS fact sheet, podcast, and graphics are available online

Elevated concentrations of nitrogen and phosphorus, nutrients that can negatively impact aquatic ecosystems and human health, have remained the same or increased in many streams and aquifers across the Nation since the early 1990’s, according to a new national study by the U.S. Geological Survey.

“This USGS report provides the most comprehensive national-scale assessment to date of nitrogen and phosphorus in our streams and groundwater,” said Marcia McNutt, USGS Director. “For years we have known that these same nutrients in high concentrations have resulted in ‘dead zones’ when they reach our estuaries, such as during the spring at the mouth of the Mississippi, and now we have improved science-based explanations of when, where, and how elevated concentrations reach our streams and aquifers and affect aquatic life and the quality of our drinking water.”   

“Despite major Federal, State and local efforts and expenditures to control sources and movement of nutrients within our Nation’s watersheds, national-scale progress was not evident in this assessment, which is based on thousands of measurements and hundreds of studies across the country from the 1990’s and early 2000’s,” said Matthew C. Larsen, USGS Associate Director for Water.

According to the U.S. Environmental Protection Agency, nutrient pollution has consistently ranked as one of the top three causes of degradation in U.S. streams and rivers for decades.

USGS findings show that widespread concentrations of nitrogen and phosphorus remain two to ten times greater than levels recommended by the EPA to protect aquatic life. Most often, these elevated levels were found in agricultural and urban streams. These findings show that continued reductions in nutrient sources and implementation of land-management strategies for reducing nutrient delivery to streams are needed to meet EPA recommended levels in most regions.

Nutrients occur naturally in water and are needed for plant growth and productive aquatic ecosystems; however, in high concentrations nutrients often result in the growth of large amounts of algae and other nuisance plants in streams, lakes and estuaries. The decay of these plants and algae can cause areas of low dissolved oxygen, known as hypoxic, or “dead,” zones that stress or kill aquatic life. Some forms of algae release toxins that can result in health concerns.

The study also found that nitrate is a continuing human-health concern in many shallow aquifers across the Nation that are sources of drinking water. In agricultural areas, more than one in five shallow, private wells contained nitrate at levels above the EPA drinking water standard. The quality and safety of water from private wells—which are a source of drinking water for about 40 million people—are not regulated by the Federal Safe Drinking Water Act and are the responsibility of the homeowner.

Because nitrate can persist in groundwater for years and even decades, nitrate concentrations are likely to increase in aquifers used for public drinking-water supplies during at least the next decade, as shallow groundwater with high nutrient concentrations moves downward into deeper aquifers.

“Strategies designed to reduce nutrient inputs on the land will improve the quality of water in near-surface parts of aquifers; however, decades may pass before quality improves in deeper parts of the aquifer, which serve as major sources for public-supply wells,” said Neil Dubrovsky, USGS hydrologist and lead scientist on this study. “Unfortunately, similar time delays for improvements are expected for streams that receive substantial inputs of groundwater”

A variety of sources can contribute nutrients to surface and groundwater, such as wastewater and industrial discharges, fertilizer and manure applications to agricultural land, runoff from urban areas, and atmospheric sources. USGS findings show that nutrient sources and resulting concentrations vary across the Nation. For example, concentrations of nitrogen generally are highest in agricultural streams in the Northeast, Midwest, and the Northwest, which have some of the most intense applications of fertilizer and manure in the Nation.

Differences in concentrations across the Nation also are due to natural features and human activities. For example, concentrations of nitrogen in streams draining parts of the agricultural Midwest are increased by contributions from artificial subsurface tile drains that are used to promote rapid dewatering of poorly drained soils. Conversely, concentrations of nitrate in streams draining parts of the Southeast appear to dissipate faster as a result of enhanced natural removal processes in soils and streams.

“This nationwide assessment of sources and natural and human factors that control how nutrients enter our streams and groundwater helps decision-makers anticipate where watersheds are most vulnerable to contamination and set priorities and management actions in different geographic regions of the country,” said Dubrovsky.

For more than 125 years, the USGS has served as the Nation’s water monitoring agency, including flow and (or) quality in selected streams and rivers across the U.S. USGS continues to work closely with the EPA, U.S. Department of Agriculture, the States, and local watersheds to assure that USGS monitoring and assessments provide useful information for managing nutrients throughout the Nation.

Water-quality data from more than 1,300 locations, much of it in real-time, is available through USGS Water Quality Watch. Additional information about surface water, groundwater and water quality is available at National Water Information System Web Interface. You can also receive instant, customized updates about water conditions by subscribing to WaterAlert, a new service from the USGS.

USGS Newsroom


More information

Parameter Value Description
Magnitude mb The magnitude for the event.
Longitude ° East Decimal degrees longitude. Negative values for western longitudes.
Latitude ° North Decimal degrees latitude. Negative values for southern latitudes.
Depth km Depth of the event in kilometers.
Place Textual description of named geographic region near to the event. This may be a city name, or a Flinn-Engdahl Region name.
Time 1970-01-01 00:00:00 Time when the event occurred. UTC/GMT
Updated 1970-01-01 00:00:00 Time when the event was most recently updated. UTC/GMT
Timezone offset Timezone offset from UTC in minutes at the event epicenter.
Felt The total number of felt reports
CDI The maximum reported intensity for the event.
MMI The maximum estimated instrumental intensity for the event.
Alert Level The alert level from the PAGER earthquake impact scale. Green, Yellow, Orange or Red.
Review Status Indicates whether the event has been reviewed by a human.
Tsunami This flag is set to "1" for large events in oceanic regions and "0" otherwise. The existence or value of this flag does not indicate if a tsunami actually did or will exist.
SIG A number describing how significant the event is. Larger numbers indicate a more significant event.
Network The ID of a data contributor. Identifies the network considered to be the preferred source of information for this event.
Sources A comma-separated list of network contributors.
Number of Stations Used The total number of Number of seismic stations which reported P- and S-arrival times for this earthquake.
Horizontal Distance Horizontal distance from the epicenter to the nearest station (in degrees).
Root Mean Square sec The root-mean-square (RMS) travel time residual, in sec, using all weights.
Azimuthal Gap The largest azimuthal gap between azimuthally adjacent stations (in degrees).
Magnitude Type The method or algorithm used to calculate the preferred magnitude for the event.
Event Type Type of seismic event.
Event ID Id of event.
Event Code An identifying code assigned by, and unique from, the corresponding source for the event.
Event IDS A comma-separated list of event ids that are associated to an event.

Leave a Reply