Earthquakes today

Current and latest world earthquakes breaking news, activity and articles today

Geological news

New Evidence Shows Power of East Coast Earthquakes


New Evidence Shows Power of East Coast Earthquakes

Virginia Earthquake Triggered Landslides at Great Distances

Earthquake shaking in the eastern United States can travel much farther and cause damage over larger areas than previously thought.

U.S. Geological Survey scientists found that last year’s magnitude 5.8 earthquake in Virginia triggered landslides at distances four times farther—and over an area 20 times larger—than previous research has shown.

“We used landslides as an example and direct physical evidence to see how far-reaching shaking from east coast earthquakes could be,” said Randall Jibson, USGS scientist and lead author of this study. “Not every earthquake will trigger landslides, but we can use landslide distributions to estimate characteristics of earthquake energy and how far regional ground shaking could occur.”

“Scientists are confirming with empirical data what more than 50 million people in the eastern U.S. experienced firsthand: this was one powerful earthquake,” said USGS Director Marcia McNutt. “Calibrating the distance over which landslides occur may also help us reach back into the geologic record to look for evidence of past history of major earthquakes from the Virginia seismic zone.”

This study will help inform earthquake hazard and risk assessments as well as emergency preparedness, whether for landslides or other earthquake effects.

This study also supports existing research showing that although earthquakes are less frequent in the East, their damaging effects can extend over a much larger area as compared to the western United States.

The research is being presented today at the Geological Society of America conference, and will be published in the December 2012 issue of the Bulletin of the Seismological Society of America.

The USGS found that the farthest landslide from the 2011 Virginia earthquake was 245 km (150 miles) from the epicenter. This is by far the greatest landslide distance recorded from any other earthquake of similar magnitude. Previous studies of worldwide earthquakes indicated that landslides occurred no farther than 60 km (36 miles) from the epicenter of a magnitude 5.8 earthquake.

“What makes this new study so unique is that it provides direct observational evidence from the largest earthquake to occur in more than 100 years in the eastern U.S,” said Jibson. “Now that we know more about the power of East Coast earthquakes, equations that predict ground shaking might need to be revised.”

It is estimated that approximately one-third of the U.S. population could have felt last year’s earthquake in Virginia, more than any earthquake in U.S. history. About 148,000 people reported their ground-shaking experiences caused by the earthquake on the USGS “Did You Feel It?” website. Shaking reports came from southeastern Canada to Florida and as far west as Texas.

In addition to the great landslide distances recorded, the landslides from the 2011 Virginia earthquake occurred in an area 20 times larger than expected from studies of worldwide earthquakes. Scientists plotted the landslide locations that were farthest out and then calculated the area enclosed by those landslides. The observed landslides from last year’s Virginia earthquake enclose an area of about 33,400 km2, while previous studies indicated an expected area of about 1,500 km2 from an earthquake of similar magnitude.

“The landslide distances from last year’s Virginia earthquake are remarkable compared to historical landslides across the world and represent the largest distance limit ever recorded,” said Edwin Harp, USGS scientist and co-author of this study. “There are limitations to our research, but the bottom line is that we now have a better understanding of the power of East Coast earthquakes and potential damage scenarios.”

The difference between seismic shaking in the East versus the West is due in part to the geologic structure and rock properties that allow seismic waves to travel farther without weakening.

Learn more about the 2011 central Virginia earthquake.

Landslides triggered from the 2011 magnitude 5.8 earthquake in Virginia occurred at far greater distances than expected. The farthest landslide was 245 km from the epicenter; based on previous studies of worldwide earthquakes, landsliding would have been expected to occur no farther than 60 km from the epicenter.
Landslides triggered from the 2011 magnitude 5.8 earthquake in Virginia occurred at far greater distances than expected. The farthest landslide was 245 km from the epicenter; based on previous studies of worldwide earthquakes, landsliding would have been expected to occur no farther than 60 km from the epicenter. ((High resolution image)
Did You Feel It? East vs West: This image illustrates how earthquakes are felt over much larger areas in the eastern U.S. than those west of the Rocky Mountains. The map compares USGS
Did You Feel It? East vs West: This image illustrates how earthquakes are felt over much larger areas in the eastern U.S. than those west of the Rocky Mountains. The map compares USGS “Did You Feel It?” data from the magnitude 5.8 earthquake on August 23, 2011 in central Virginia (green) to data from an earthquake of similar magnitude and depth in California (red). ((High resolution image)

USGS Newsroom


More information

Parameter Value Description
Magnitude mb The magnitude for the event.
Longitude ° East Decimal degrees longitude. Negative values for western longitudes.
Latitude ° North Decimal degrees latitude. Negative values for southern latitudes.
Depth km Depth of the event in kilometers.
Place Textual description of named geographic region near to the event. This may be a city name, or a Flinn-Engdahl Region name.
Time 1970-01-01 00:00:00 Time when the event occurred. UTC/GMT
Updated 1970-01-01 00:00:00 Time when the event was most recently updated. UTC/GMT
Timezone offset Timezone offset from UTC in minutes at the event epicenter.
Felt The total number of felt reports
CDI The maximum reported intensity for the event.
MMI The maximum estimated instrumental intensity for the event.
Alert Level The alert level from the PAGER earthquake impact scale. Green, Yellow, Orange or Red.
Review Status Indicates whether the event has been reviewed by a human.
Tsunami This flag is set to "1" for large events in oceanic regions and "0" otherwise. The existence or value of this flag does not indicate if a tsunami actually did or will exist.
SIG A number describing how significant the event is. Larger numbers indicate a more significant event.
Network The ID of a data contributor. Identifies the network considered to be the preferred source of information for this event.
Sources A comma-separated list of network contributors.
Number of Stations Used The total number of Number of seismic stations which reported P- and S-arrival times for this earthquake.
Horizontal Distance Horizontal distance from the epicenter to the nearest station (in degrees).
Root Mean Square sec The root-mean-square (RMS) travel time residual, in sec, using all weights.
Azimuthal Gap The largest azimuthal gap between azimuthally adjacent stations (in degrees).
Magnitude Type The method or algorithm used to calculate the preferred magnitude for the event.
Event Type Type of seismic event.
Event ID Id of event.
Event Code An identifying code assigned by, and unique from, the corresponding source for the event.
Event IDS A comma-separated list of event ids that are associated to an event.

Leave a Reply