Earthquakes today

Current and latest world earthquakes breaking news, activity and articles today

Geological news

North Carolina, Delmarva Coastlines Changed by Hurricane Sandy


North Carolina, Delmarva Coastlines Changed by Hurricane Sandy

USGS releases new before-and-after photos

Updated

ST. PETERSBURG, Fla. – The USGS has released a series of aerial photographs showing before-and-after images of Hurricane Sandy’s impacts on the Atlantic Coast. Among the latest photo pairs to be published are images showing the extent of coastal change in North Carolina, Virginia, Maryland, and Delaware.

The photos, part of a USGS assessment of coastal change from as far south as the Outer Banks of North Carolina to as far north as Massachusetts, show that the storm caused dramatic changes to portions of shoreline extending hundreds of miles. Pre- and post-storm images of the New Jersey and New York shoreline in particular tell a story of a coastal landscape that was considerably altered by the historic storm. Meanwhile, images from hundreds of miles south of the storm’s landfall demonstrate that the storm’s breadth caused significant coastal change as far south as the Carolinas.

“Sandy taught us yet again that not all Cat-1 hurricanes are created equal: the superstorm’s enormous fetch over the Atlantic produced storm surge and wave erosion of historic proportions,” said USGS Director Marcia McNutt. “We have seized this opportunity to gather unique data on a major coastline-altering event.”

As major storms approach, the USGS conducts pre-storm and post-storm flights to gather aerial images along the length of the coastline expected to experience impacts from the storm’s landfall. Identifying sites of such impacts helps scientists understand which areas are likely to undergo the most severe impacts from future storms, and improves future coastal impact forecasting. 

Photo pairs from North Carolina to Massachusetts are now available online.

“This storm’s impact on sandy beaches included disruption of infrastructure in the south, such as overwash of roads near Pea Island, Buxton, and Rodanthe in N.C., and some dune erosion near Duck, N.C.,” said St. Petersburg-based USGS oceanographer Nathaniel Plant. Such storm-induced changes to the coastal profile can jeopardize the resilience of impacted coastal communities in the path of subsequent storms.

“Houses and infrastructure may be more vulnerable to future storms because beaches are narrower and dunes are lower,” Plant said.

Overwash occurs when storm surge and waves exceed the elevation of protective sand dunes, thereby transporting sand inland. In addition to threatening infrastructure like roadways, it can bury portions of buildings and cause extensive property damage.

The configuration of a coastline’s physical features determine how it will respond to storm forces, and whether it will experience erosion, overwash, or inundation.

In South Bethany, Delaware, the storm appears to have eroded a low dune that had stood between the Atlantic and a row of beachfront homes. Like overwash, beach and dune erosion can compromise a coastline’s natural defenses against future storms.

The Hurricanes and Extreme Storms team aims to quantify the degree to which such these defenses have weakened in all areas Hurricane Sandy impacted.

Data collected from these surveys are also used to improve predictive models of potential impacts from future severe storms. Before a storm makes landfall, USGS makes these predictions to help coastal communities identify areas particularly vulnerable to severe coastal change, such as beach and dune erosion, overwash, and inundation.

For instance, in the days before Sandy approached the eastern seaboard, the USGS ran models forecasting that 91 percent of the Delmarva coastline would experience beach and dune erosion, while 98 percent and 93 percent of beaches and dunes in New Jersey and New York, respectively, were likely to erode. Preliminary analysis suggests that Hurricane Sandy rapidly displaced massive quantities of sand in a capacity that visibly changed the landscape. 

The USGS assessment also includes pre- and post-landfall airborne lidar data, which offers a more quantitative look at the extent of coastal change caused by Sandy. Lidar, or light detection and ranging, is an aircraft-based remote sensing method that uses laser pulses to collect highly detailed ground elevation data.

USGS Newsroom


More information

Parameter Value Description
Magnitude mb The magnitude for the event.
Longitude ° East Decimal degrees longitude. Negative values for western longitudes.
Latitude ° North Decimal degrees latitude. Negative values for southern latitudes.
Depth km Depth of the event in kilometers.
Place Textual description of named geographic region near to the event. This may be a city name, or a Flinn-Engdahl Region name.
Time 1970-01-01 00:00:00 Time when the event occurred. UTC/GMT
Updated 1970-01-01 00:00:00 Time when the event was most recently updated. UTC/GMT
Timezone offset Timezone offset from UTC in minutes at the event epicenter.
Felt The total number of felt reports
CDI The maximum reported intensity for the event.
MMI The maximum estimated instrumental intensity for the event.
Alert Level The alert level from the PAGER earthquake impact scale. Green, Yellow, Orange or Red.
Review Status Indicates whether the event has been reviewed by a human.
Tsunami This flag is set to "1" for large events in oceanic regions and "0" otherwise. The existence or value of this flag does not indicate if a tsunami actually did or will exist.
SIG A number describing how significant the event is. Larger numbers indicate a more significant event.
Network The ID of a data contributor. Identifies the network considered to be the preferred source of information for this event.
Sources A comma-separated list of network contributors.
Number of Stations Used The total number of Number of seismic stations which reported P- and S-arrival times for this earthquake.
Horizontal Distance Horizontal distance from the epicenter to the nearest station (in degrees).
Root Mean Square sec The root-mean-square (RMS) travel time residual, in sec, using all weights.
Azimuthal Gap The largest azimuthal gap between azimuthally adjacent stations (in degrees).
Magnitude Type The method or algorithm used to calculate the preferred magnitude for the event.
Event Type Type of seismic event.
Event ID Id of event.
Event Code An identifying code assigned by, and unique from, the corresponding source for the event.
Event IDS A comma-separated list of event ids that are associated to an event.

Leave a Reply